3 Special Coordinate Systems

(3.1) Theorem

Let f be a coordinate system for the line ℓ in a metric geometry. If $a \in \mathbb{R}$ and ε is ± 1 and if we define $h_{a, \varepsilon}: \ell \rightarrow \mathbb{R}$ by

$$
h_{a, \varepsilon}(P)=\varepsilon(f(P)-a)
$$

then $h_{a, \varepsilon}$ is a coordinate system for ℓ.

1. Prove the previous theorem.
2. Let f be a coordinate system for the line ℓ in a metric geometry. Define $h_{a, \varepsilon}: \ell \rightarrow \mathbb{R}$ by $h_{a, \varepsilon}(P)=\varepsilon(f(P)-a)($ where $a \in \mathbb{R}$, and ε is $\pm 1)$. Explain and geometrically show difference between
(i) f and $h_{0,-1}$;
(ii) f and $h_{a, 1}$.
3. Let ℓ be a line in a metric geometry and let A and B be points on the line. Show that there is a coordinate system g on ℓ with $g(A)=0$ and $g(B)>0$.

(3.2) Definition (coordinate system with A as origin and B positive.)

Let $\ell=\ell(A, B)$. If $g: \ell \rightarrow \mathbb{R}$ is a coordinate system for ℓ with $g(A)=0$ and $g(B)>0$, then g is called a coordinate system with A as origin and B positive.
4. In the Euclidean Plane find a ruler f with $f(P)=0$ and $f(Q)>0$ for the given pair P and Q :
i. $P(2,3), Q(2,-5)$;
ii. $P(2,3), Q(4,0)$.
5. In the Poincaré Plane find a ruler f with $f(P)=0$ and $f(Q)>0$ for the given pair P and Q :
i. $P(2,3), Q(2,1)$;
ii. $P(2,3), Q(-1,6)$.
6. In the Taxicab Plane find a ruler f with $f(P)=0$ and $f(Q)>0$ for the given pair P and Q :
i. $P(2,3), Q(2,-5)$;
ii. $P(2,3), Q(4,0)$.

It is reasonable to ask if there are any other operations (besides reflection and translation) that can be done to a coordinate system to get another coordinate system; that is, is every coordinate system of the form $h_{a, \varepsilon}$?
7. If ℓ is a line in a metric geometry and if $f: \ell \rightarrow \mathbb{R}$ and $g: \ell \rightarrow \mathbb{R}$ are both coordinate systems for ℓ, show that then there is an $a \in \mathbb{R}$ and an $\varepsilon= \pm 1$ with $g(P)=\varepsilon(f(P)-a)$ for all $P \in \ell$.
8. Prove that a line in a metric geometry has infinitely many points.
9. Let P and Q be points in a metric geometry. Show that there is a point M such that $M \in p(P, Q)$ and $d(P, M)=d(M, Q)$.
10. Let $\{\mathcal{S}, \mathcal{L}, d\}$ be a metric geometry and $Q \in \mathcal{S}$. If ℓ is a line through Q show that for each real number $r>0$ there is a point $P \in \ell$ with $d(P, Q)=r$. (This says that the line really extends indefinitely.)
11. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(s)=s /(|s|+1)$. Show that g is injective.
12. Let $\{\mathcal{S}, \mathcal{L}, d\}$ be a metric geometry. For each $\ell \in \mathcal{L}$ choose a ruler f_{ℓ}. Define the function \bar{d} by $\bar{d}(P, Q)=\left|g\left(f_{\ell}(P)\right)-g\left(f_{\ell}(Q)\right)\right|$ where $\ell=\ell(P, Q)$ and g is as in Problem 11. Show that \bar{d} is a distance function.
13. In Problem 12 show that $\{\mathcal{S}, \mathcal{L}, \bar{d}\}$ is not a metric geometry.

A metric geometry always has an infinite number of points (Problem 8). In particular, a finite geometry cannot be a metric geometry.

